AL-AQSA UNIVERSITY
Department of mathematics
Date: 3/6/2018

جامعة الأقتسى

Topology (Math 4360)
Final Exam
Time: Two Hours

الرَّقِمُ الجَاهِمُ عَيْنُ (

الاسم:

Answer all of the following questions:

Q1) a)(5 pt.) Show that (X,τ) is T_I if and only if each point $x \in X$ is a closed subset of X.

b) (5 pt.) Show that int(A) \cup int (B) \subseteq int (A \cup B) . Show that the equality may not always hold

O2)	a)	Which	of the	following	topologies	are home	omorphic,	explain	your answer
~ -,	Τ,	* * * * * * * * * * * * * * * * * * * *			F D		I ,	I	J

1) (3 pt.) R and R² with the standard topology on each.

2) (3 pt.) the left ray and the cofinite topology on R.

3) (3 pt.) (0,1) and R with the standard topology on each.

4) (3 pt.) Z and N (where Z is the set of integer and N is the set of natural number)

b) (6 pt.) Show that $\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$

c) (6 pt.) For R^2 with the product topology induced by the base $R_{standard} \times R_{standard}$. Let $A = N \times (0, \infty)$, $B = \{ (x,y) \subseteq R^2 : x-y=1 \}$ find

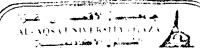
Int(A)=	Bd(A)=	Λ'=	$\overline{A} =$
Int(B)=	Bd(B)=	B'=	$\overline{B} =$
: D.			

Q3) a) (5 pt.) Show that $f:(R, R_{standard}) \rightarrow (R, R_{standard})$ defined by $f(x) = x^2$ is continuous.

- b) Give example to show that the following is not hold:
 - 1) (2 pt.) T_0 -space $\rightarrow T_1$ -space.
 - 2) (2 pt.) Regular \rightarrow T₂-space.
 - 3) (2 pt.) Every injection function is continuous.

c) (4 pt.) Show taht T_4 -space $\rightarrow T_3$ -space.

- **Q4)** a) Let $A = \{(a,b) : a,b \in R\} \cup \{\{0\}\}$
 - 1) (5 pt.) Show that A be considered as a basis for some topology \mathcal{T} on R?


- 2) (2 pt.) Explain Why T is not the standard topology on R?
- 3) (3 pt.) Compare with $R_{standard}$ and \mathcal{T} .

- b) Let f, g: (R, $\tau_{styandard}$) \rightarrow (R; $\tau_{standars}$) be continuous functions . Prove or disprove:
- 1) (3 pt.) the set $\{x \in R : f(x) \le g(x)\}\$ is closed.

2) (3 pt.) the function $h: (R, \tau_{styandard}) \rightarrow (R, \tau_{standars})$, defined as $h(x) := max\{ f(x), g(x) \}$ for $x \in R$ is continuous.

c) (5 pt.) Show that (X, τ) is Hausdorff space <u>iff</u> the set $D=\{(x, x) \in X \times X : x \in X\}$ is closed in $X \times X$.

مع تمنياتنا بالتوفيق

STATE OF PALESTINE

Faculty of Applied Science

Time: Two Hours

Date: 31/5/2018 "second semester 2017-2018"

AL-AGSA-OHIVERSITY
Department of Mathematics
Abstraction geora I (Math 3313)
Final Exam:

اسم الطالب/ة:	Q1	Q2	Q3	Q4	Q5	Q6	Total
الرقم الأكاديمي:	10	10	10	10	11	9	60
مدرس المساق: د. أحمد محمود الأشقر							

محمود الأشقر	مدرس المساق: د. أحمد										
Answer all the follow				متحان 6 أسئلة،							
(Q1) (i) Mark each of t	_				(5 marks)						
	G (G is a group). If $ a $				lie group.						
() (2) If $G = (\mathbb{R}^*, \bullet)$ and $H = (\mathbb{R}^+, \bullet)$, then the index $ G:H = \infty$.											
() (3) Let $\phi: G \to \overline{G}$ be a group homomorphism. If $g \in G$ with finite order, then											
$ \phi(g) $	divides $ g $.										
() (4) The permu	tation $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 9 & 4 & 5 & 2 \end{bmatrix}$	5 6 7 8 9 1 8 7 6 3	is even .								
() (5) The relatio	$n \ \phi: \mathbb{Z}_{12} \to \mathbb{Z}_{10} \ define$	ed by $\phi(x) =$	$= (3x) \mod 10$	is a homomo	orphism .						
(ii) Circle the correct a	answer for each of the	following:			(5 marks)						
(1) Let $a \in G$ (G is a g	group). Then $ a = a ^2$	iff $ a $ is	•••								
(a) even	(b) odd	(c) ∞		(d) (b or e)							
(2) The order of the fa	actor group $(\mathbb{Z}_{20} \oplus U$	(20))/(4,7)) is								
(a) 160	(b) 20	(c) 8		(d) 4							
(3) The maximum ord											
(a) 15	(b) 18	(c) 7		(d) 12							
(4) The group $\mathbb{Z}_{15} \oplus \mathbb{Z}_4$	isomorphic to										
(a) $\mathbb{Z}_{30} \oplus \mathbb{Z}_2$	(b) $\mathbb{Z}_{12} \oplus \mathbb{Z}_5$	(c) \mathbb{Z}_{60}		(d) $\mathbb{Z}_6 \oplus \mathbb{Z}_{10}$)						
(5) The order of the el	ement $12 + \langle 9 \rangle$ in the	factor group	$\mathbb{Z}_{36}/\langle 9 \rangle$ is	·							

(c) 4

(d) 3

(b) 9

(a) 36

(Q2) (a) Let
$$G = \left\{ \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R}, b \neq 0 \right\}$$
 under matrix multiplication, and
$$H = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} : x \in \mathbb{R} \right\}.$$

(i) Show that H is a subgroup of G.

(4 marks)

(ii) Is
$$H \triangleleft G$$
? Justify your answer?

(3 marks)

(b) Let
$$\beta \in S_7$$
 and suppose $\beta^3 = (4316752)$. Find β in disjoint cycle form. (3 marks)

(Q3)(a) Let $\phi: G \to \overline{G}$ be a homomorphism, prove that $\phi(a) = \phi(b)$ iff $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.

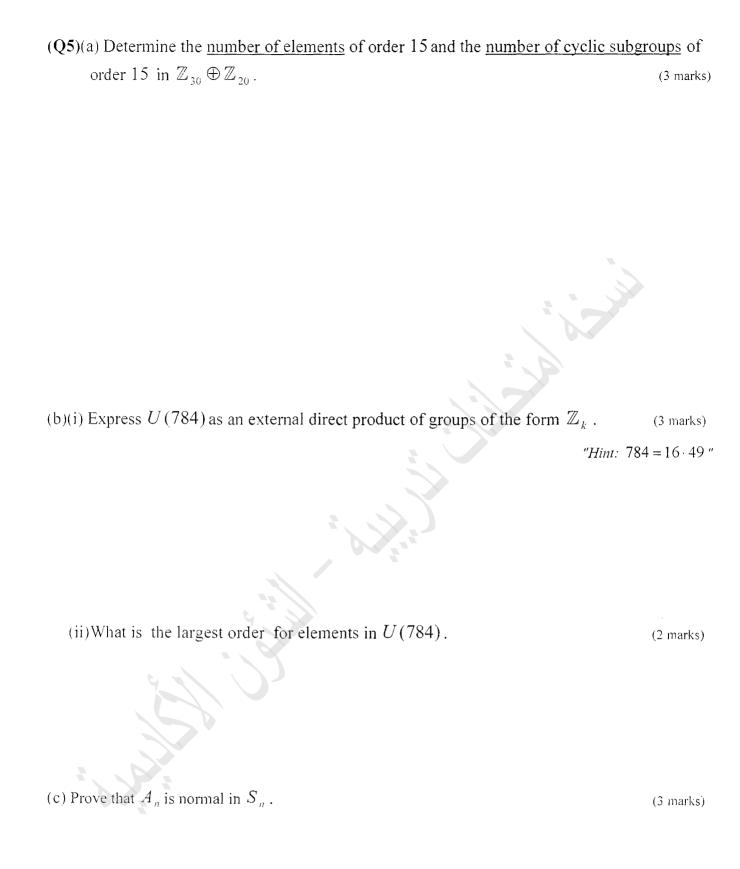
(3 marks)

- (b) Define $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{30}$ by $\phi(x) = 10x \pmod{30}$ $\forall x \in \mathbb{Z}_{12}$
- (i) Show that ϕ is a homomorphism . (3 marks)

(ii) Find Ker
$$\phi$$
.

(iii) Find
$$\phi^{-1}(20)$$
.

(iv) Choose:
$$\mathbb{Z}_{12}/\mathrm{Ker} \ \phi \approx \dots$$
 $(\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_{10})$ (1 mark)


(Q4)(a) Let G and H be finite cyclic groups. Show that $G \oplus H$ is cyclic iff gcd(|G|, |H|) = 1.

(4 marks)

(b) Find two groups G and H such that $G \not\approx H$, but $\operatorname{Aut}(G) \approx \operatorname{Aut}(H)$. (3 marks)

(c) Let G be a group with the following property: "If $a,b,c \in G$ and $ab = ca \implies b = c$ ".

Prove that G is Abelian. (3 marks)

(b) Suppose G is finite Group of order n and gcd(n,k)=1. If $g \in G$ and $g^k=e$, prove that g=e.

(c) Suppose that G is a non-Abelian group of order p^3 (where p is prime), and $Z(G) \neq \{e\}$. Prove that |Z(G)| = p. (3 marks)

AL-AQSA UNIVERSITY

Department of mathematics

Date: 2 /06/2018 (Second semester 2017-2018)

Calculus 1(Math 1411)

Final Exam Time: 2 Hours

مدرس المساق: د. سحر السمك

1)

الرقم الأكاديمي:

عدد الصفحات (6) و عدد الأسئلة (6)

Q1) a) Find $\frac{dy}{dx}$ for the following:

 $y = \left(5x^2 + \sin 2x\right)^{-\frac{3}{2}}$

[13 marks]

(2 marks)

2) $x^2 \cot(5x + 10y) = y \cos x$.

(3 marks)

 $2) \quad y = \int_{x^2}^{\infty sx} \sqrt{t+1} \quad dt$

(3 marks)

b) Find the value (s) of **c** that satisfying the mean value theorem for derivative

if
$$f(x) = x + \frac{1}{x}$$
 on $\left[\frac{1}{2}, 2\right]$

(3 marks)

c) Find
$$\delta > 0$$
 that show $\lim_{x \to 3} x^2 + 1 = 10$. "Take $\epsilon = 1$ ".

(2 marks)

Q2) a) find the following limits:

[8 marks]

1)
$$\lim_{x \to 1^-} \frac{\lceil x+1 \rceil}{x}.$$

(2 marks)

2)
$$\lim_{x \to -5^+} \frac{5-x}{x^2 - 25}.$$

(2 marks)

$$\lim_{x \to 0} \frac{\sec 5x}{x^2 \csc^2 x}$$

(2 marks)

b) Sketch the graph of
$$f(x) = -(\sqrt{x+1}) - 2$$

(2 marks)

Q3) a) Evaluate the following integrals:

$$1) \int \frac{2}{\sqrt[3]{x^5}} + \tan^2 x \quad dx$$

(2 marks)

$$2) \int \frac{3x}{\sqrt{x^2 + 7}} dx$$

(2 marks)

3)
$$\int \cos^3 x \sin^{16} x \ dx$$

(2 marks)

$$4) \int 3x^5 \sqrt{x^3 - 2} \, dx$$

(2 marks)

b) Find <u>asymptotes</u> and <u>sketch</u> the graph of the function $y = \frac{x^2 - 3}{x - 2}$ (4 marks)

Q4) Let
$$f(x) = x^4 - 4x^3 + 5$$

[9 marks]

(a) List the intervals on which f(x) is increasing and decreasing, then find the local extreme values of f(x).

(b) List the intervals on which f(x) is <u>concave up</u> and <u>concave down</u>, then find the <u>inflection</u> points (if eisxt).

(c) Sketch the graph of f(x)

(3marks)

- (Q5) [8 marks]
 - (a) Find the <u>area</u> of the region enclosed by the parabola $y = 4 x^2$ and the line y = 2 x. (4 marks)

(b) Find the **volume** of the solid generated by revolving the region in the first quadrant bounded by the curve $y = \sqrt{x}$ and the lines y = 2 and x = 0 about the x-axis. (4 marks)

Q6) Choose the correct answer:

[10 marks]

1) The domain of the function $f(x) = \frac{1}{\sqrt{x^2 - 16}}$ is:

- a) (-4, 4)
- b) $(-\infty, -4) \cup (4, \infty)$
- c) $\Re -\{-4,4\}$

d) R

2) The range of the function $f(x) = \sqrt{16 - x^2} =$

- a) (-4, 4)
- b) [0, 4]

c) $[0,\infty)$

d) R

3) The period of the function $f(x) = \tan(\frac{x}{3})$ is:

- b) 3π

c) $\frac{2\pi}{3}$

d) 2π

4) The vertical asymptote(s) of the function $f(x) = \frac{x^2 - 2x - 3}{x^2 - 1}$ is (are):

- a) x=1
- b) x = -1 c) $x = \pm 1$
- d) there are no vertical asymp.

5) $\sin^2 x =$

- a) $\frac{1-\cos 2x}{2}$ b) $\frac{1+\cos 2x}{2}$ c) $1-\cos^2 x$ d) a and c

6) If $f(x) = \cos^2(3-x)$, then f'(0) =

- a) $-2\cos 3$
- en f'(0) =b) $2\sin 3\cos 3$ c) $6\sin 3\cos 3$ d) $-2\sin 3$

7) The solution set of the inequality $\frac{6}{r+3} \ge 1$ is

- (a) $(-\infty, 3]$
- (b) $[3, \infty)$
- (c) (-3,3]

(d) [-3,3]

8) $\int_{-\pi}^{\pi} \sqrt[3]{x} + \sin^5 x \qquad dx$ a) 2π

- b) π
- c) 0
- d) 1

9) $\lim_{x \to 0} \tan \left(\frac{\sin x}{x} - 1 \right) =$

- c) $\sqrt{3}$
- d) the limit does not exist

10) At x = 0, the function $f(x) = x^{\frac{2}{3}}$

- (a) has an inflection point
- (b) has a vertical tangent (c) is continuous (d) all of them is true.

AL-AQSA UNIVERSITY

Complex Analysis (Math 3311)

Department of mathematics

Final Exam

Date: 27-5-2018

Time: Two Hours

Answer all of the following questions:

Q1) a) (6 pt.) Show that the function $f(z)=\sinh x \cos y + i \cosh x \sin y$ is differentiable and find f'(z) as a function of z. What about the function $g(z)=\sinh x \cos y - i \cosh x \sin y$? explain.

b) (6 pt.) Find all complex solutions z for the equation sin(z) + 3cos(z) = 1

١

Q2) a) (6 pt.) Show that the function $f(z) = (\overline{z})^2 + z$ is not analytic.

b) (2 pt.) Compute $\cos(\pi + i)$.

(c) (6 pt.) Find all $z \in C$ such that $exp(2z) = \sqrt{3}-i$

Q3) a) (6 pt.) Show that $|\sinh z|^2 = \sinh^2 x + \sin^2 y$. (4 marks)

b) (6 pt.) Find the principal value of the following complex power $(-i)^i$

Q4) a) (6 pt.) Suppose z_0 is any constant complex number interior to any simple closed curve contour C. Show that for a positive integer n,

$$\oint_C \frac{dz}{(z-z_0)^n} = \begin{cases} 2\pi i, & n=1\\ 0 & n>1 \end{cases}$$

b) (6 pt.) Let C be the curve given by a half-circle from 1 to -1 (positively oriented) followed by a straight line from -1 to 1. Compute the integral

$$\int_{C} (z + 1 + \overline{z}) dz$$

(c) (6 pt.) Compute the values of the following complex line integrals.

(a)
$$\int_{|z|=4}^{\infty} \frac{z^3 + z + 1}{(z-1)^3} dz$$

(b)
$$\int_{|z|=4} \frac{z^3 + z + 1}{z^3 - 6z^2 + 5z} \, dz$$

d) (4 pt.) Without evaluating the integral, show that

$$\left| \int_{\mathcal{C}} \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3}$$

where C is the arc of the circle |z| = 2 from 2 to 2i that lies in the first quadrant

Q5) a) (5 pt.) Prove that if f(z) and $f(\overline{z})$ are both analytic in a domain D, then f(z) is constant in D.

b) (5 pt.) Prove that an analytic function $f: C \to C$ satisfying $|f(z)| \le 4$ for any $z \in C$ must be constant

انتمت الأسئلة مع أمنياتنا للجميع بالنجاج والتوفيق

Time: 2 hours

......Final Exam. For the 2nd sem. of the year 2017/2018

Course: Introduction to L.P. and O.R.

AL-AQSA UNIVERSITY
Science Block
Math. Dep.

Name:-

Solve the following questions:-

Q(1) a- If a L.P.P. has a feasible solution then show that it also has a basic feasible solution (10marks)

b- For the following L.P.P.

$$Maximize \quad Z = X_1 + 2X_2 + 4X_3$$

Subject to the constrants

$$X_1 + 3X_2 + 4X_3 = 7$$

$$X_1 + 3X_2 + 5X_3 = 7$$

$$X_1, X_2, X_3 \ge 0$$

(1) Reduce the feasible solution (1,2,0) to a basic feasible solution. (10marks)

(2) What is the number of the basic solutions?

(4marks)

Q(2) Use Simplex method to solve the following L.P.P.

(10 marks)

Max
$$Z = 4X_1 + 3X_2 - X_3$$

Subject to the constrants
$$2X_1 + 3X_2 - 5X_3 \le -30$$
$$X_2, X_3 \ge 0$$
$$X_1 \quad Unrestricted \quad in \quad sign$$

Q(3) Using the Big M-method solve the following L.P.P. (For only one iteration)

Maximize
$$Z = 2X_1 + X_2 + 3X_3$$

Subject to the constrants

$$X_1 + X_2 + 2X_3 \le 5$$

 $2X_1 + 3X_2 + 4X_3 = 12$
 $X_1, X_2, X_3 \ge 0$

(12 marks)

Q(4) We have 4-jobs each of which has to go through 3-machines in the order $M_1M_2M_3$

(12 marks)

Processing time (in hours) is given below

Job/Machine	M1	M2	M3
A	12	6	5
В	8	7	8
С	7	2	10
D	10	5	9

Determine a sequence that minimizes the total elapsed time and hence find the total elapsed time, Idle time for each machine.

Q(5) A project consists of 14 activities A,B,C,....M,N the notation X < Y means that the activity X must be finished before Y can begin, with this notation A < D,H; B < E; C < I,F; D < G; H,L < M; E,I < L; E,F < K; E,I < J; G,J,K < N. The time in days of completion of each activity is as follows:-

Activity	A	В	C	D	E	F	G	H	I	J	K	L	M	N
Time	13	8	8	8	3	3	18	8	13	3	8	18	3	23

(i) Draw the project network

- (ii) Determine the earliest and latest starting and completion times of activities.
- (iii) Identify the critical path

GOOD LUCK 🕮

STATE OF PALESTINE

AL-AQSA UNIVERSITY

Al-Aqsa University

Faculty of Applied Science Department of Mathematics

Linear Algebra II (MATH 2317) Instructor: Dr. Mohammad Hamoda

Date: 24/05/2018 Final Exam Time: Two Hours There are 6 questions in 6 pages

Read the questions carefully. Be neat and organized.

Question(1):- Mark True or False: [15 marks]

- 1. [] The column vectors of an $n \times n$ matrix A span \mathbb{R}^n iff the orthogonal complement of the row space of A is $\{0\}$.
- 2. [] If A^2 is an invertible matrix, then $\lambda = 0$ is an eigenvalue of A.
- 3. [] The set of vectors $\{(2-3i,i), (3+2i,-1)\}$ is a basis for the Euclidean complex vector space \mathbb{C}^2 .
- 4. [] Let V be the vector space of all complex-valued functions, then the vectors $f = 3 + 3i\cos 2x$, $g = \sin^2 x + i\cos^2 x$ and $h = \cos^2 x i\sin^2 x$ are linearly dependent.
- 5. [] If v_1 , v_2 and v_3 come from different eigenspaces of A, then it's impossible to express v_3 as a linear combination of v_1 and v_2 .
- 6. [] If A is diagonalizable matrix, then there is a unique matrix P such that $P^{-1}AP$ is a diagonal matrix.
- 7. [] Between any n-dimensional vector space and \mathbb{R}^n , there is exactly one isomorphism.
- 8. [] The row space of a matrix is isomorphic to its column space.
- 9. [] Any vector space is isomorphic to one of its proper subspaces.
- 10. [] An $n \times n$ matrix A is diagonalizable iff there is a basis of \mathbb{R}^n consisting of eigenvectors of A.

Question(2):- [12 marks]

(I) Find bases for the eigenspaces of the matrix:

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

[5 marks]

(II) Find a vector u in \mathbb{R}^4 that is orthogonal to v=(1,0,0,0) and w=(0,0,0,1), and makes equal angles with b=(0,1,0,0) and c=(0,0,1,0). [4 marks]

(III) Give a definition of: Orthogonally diagonalizable matrix — Quadratic form. [3 marks]

Question(3):- [11 marks]

(I) Find the geometric and algebraic multiplicities of the matrix:

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Is A diagonalizable? Explain.

[6 marks]

(II) Prove that if λ is an eigenvalue of A, x is a corresponding eigenvector and k is a scalar, then $\lambda - k$ is an eigenvalue of A - kI, and x is a corresponding eigenvector.

[5 marks]

Question(4):- [11 marks]

(I) Use the method of diagonalization to solve the system:

$$\dot{y}_1 = y_1 + 4y_2$$

$$\dot{y}_2 = 2y_1 + 3y_2.$$

(II) Let $u=(u_1,u_2)$ and $v=(v_1,v_2)\in\mathbb{C}^2$. Is < u, $v>=u_1\overline{v_1}$ defins a complex inner product on \mathbb{C}^2 ? Clarify your answer. [5 marks]

Question(5):- [10 marks]

(I) Classify the quadratic form $x_1^2 - x_2^2$ as positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite. [5 marks]

(II) Express the quadratic form $(c_1x_1 + c_2x_2 + \cdots + c_nx_n)^2$ in the matrix notation x^{\top} A x where A is symmetric. [5 marks]

Question(6):- [11 marks]

(I) Let P_2 be the set of all polynomials of degree 2 and P_3 be the set of all polynomials of degree 3. Show that $f: P_2 \longrightarrow P_3$ given by

 $a_0 + a_1 x + a_2 x^2 \longmapsto a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3$ is a homomorphism. Does f an isomorphism? Explain. [6 marks]

(II) Let V, W be any two vector spaces and let $f: V \longrightarrow W$ be a homomorphism, suppose that $f(v_1) = w_1$, $f(v_2) = w_2$, \cdots , $f(v_n) = w_n$ for some vectors w_1, w_2, \cdots, w_n of W. If $\{v_1, v_2, \cdots, v_n\}$ is linearly independent. Does the set $\{w_1, w_2, \cdots, w_n\}$ linearly independent? Clarify your answer. [5 marks]

Good Luck

Al –AQSA University Dep. of Math Date: 29 /05/2018

Final Exam

Time: 2 hour

Do all the following questions using a five decimal-place mantissa:

[15 Marks]

Question (1)

A) Find the order of convergence of Newton's method

A) Starting with the definition of forward difference show that $D = \frac{1}{h} Ln (1 + \Delta)$

Given the evenly spaced data of (x_i, f_i) values

				·				
	x_{i}	l	2	3	4	5	6	
	f_{i}	0.5	0.6	0.2	0.8	1.2	1.5	

a) Use the Newton-Gregory forward polynomial of degree two to estimate f(2), f'(2).

b) Use the central-difference formula to estimate f'(3).

c) Use the central-difference formula to estimate f''(4).

d) Use the data of the table to find $\int_1^6 f(x) dx$ using Simpson's $\frac{1}{3}$ - rule.

Question (3)

[15 Marks]

A) Find he local truncation error of Trapezoidal rule

Question (4)

[15 Marks]

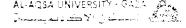
A) Use the modified Newton's Method to solve the non-linear system.

Start with $x^{(0)} = (-0.9, 2.25)^{T}$ for two iterations.

b) Use Newton's method on the equation $x^3 = N$ to drive the algorithm

$$x_{i+1} = \frac{1}{3} \left(2x_i + \frac{N}{x_i^2} \right)$$

دولة فلسطين جامعة الأقصى


التَّاريــــــــــــــــــــــــــــــــــــ		مساق (أساسيات ر <u>ا</u>		2018– 2	الفصل الثاني 017
لن <u>ن</u> : ساغان		(MATH 12	(11)		الفترة الثاثية
الدرجة: 60	التخصص:		رقم الطالب/ة:		اسم الطالب/ز
••••••	الية	ي عن الأسئلة الت	أجب/		•••••••
(كل فقرة أربعة درجات)	3 ($\frac{(5x-2)}{2} +$	$-\frac{1}{3} = \frac{x-4}{6}$		السوال الأول 1) أو.
***************************************		•••••••	••••••	•••••••••	••••••
		•••••••••••		•••••	•••••
		•••••••	••••••		******
		$x^{1/2} + 3 -$	$4x^{-1/2} = 0$	د/ي حل المعادلة	 2) أوج
		••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		••••••
•••••••••••••••••••••••••••••••••••••••		••••••	•••••	•••••••	••••••
كامل.	للحصول علي مربع	x^2-4kx	ف إلي التعبير الجبري	هو الحد الذي سيضاة	3) ما ه
	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••	••••••
	••••••				*******
	$2x^2 + kx + 8 = 0$	قيقين متساويين	جعل للمعادلة جدرين ح	د/ي قيمة k الني ت	4) أوج
	••••••				
	••••••				*******

	$x^2 + 5x - 2 = 0$	التالية بطريقة <u>اكمال المربع</u>	5) أوجد/ي حل المعادلة

			.,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(كل فقرة أربعة درجات)			السؤال الثاني :
(+,)+,)()	(221). v (13) ₅ =	1) أوجد <i>اي</i> ناتج
	(321)5 X (13)5 —	۱) ۱۰۰ این – نی
***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**********

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	************************
***************************************			*****

	,		************************

		5x + 3y = 4 $x + 3y = -4$	2) أو حداي حل المعادلة
		x + 3y = -4	
***************************************	•••••		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		••••	

***************************************	*************	,	
***************************************	2	x - 6 = 0 بطريقة التحليل	المحداء حل المحادلة
	x^{-}	$x-0=0$ $\frac{\partial}{\partial x}$	ر) اوجداي عن المعادد
	•••••	******************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	•••••	•••••	
	•••••		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***************************************		*************************
		**************************************	*********
		********************************	**************************
		$\frac{x}{x} = \frac{2}{x}$	4) أوجد/ي حل المعادلة
		x-2 3	J. J. (1

		********************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	*****************	******************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	******	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***************************************	*******************************	,
		([. 0 0	
		$x - 6\sqrt{x} + 8 = 0$	5) اوجد/ي حل المعادلة
***************************************	********************	********************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************
	***********		,,,,,,,,

(كل فقرة خمسة درجات)			السوال الثالث :
$\left[\left(A \wedge B \right) \leftrightarrow \left(C \to \bar{C} \right) \right]$	$\left[\begin{array}{cc} \overline{B} \end{array} \right] \vee \overline{B}$ وعها	لقضية التالية وبين/ي ما إ	1)أكتب/ي جدول الصدق لـ
••••••••••••		•••••	
		· , · , · · · · · · · · · · · · · · · ·	••••••
••••••••••••			
		$\sqrt{2x-1} = 1 + \sqrt{x}$	 2) أوجد/ي حن المعادلة 1-

•••••			
••••••			•••••
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		ستنتاج الرباضي	3) برهن/ي باستعمال قانون الا
	4+8+12+	+ 4n = 2n(n+1)	

		••••••••	

	····	$=(13)_5 \div (2321)_5$	4) أوجد/ي ناتج ﴿
•••••			
	*************************		•••••
•••••••••••	•••••	• • • • • • • • • • • • • • • • • • • •	

•

انتهت الأسئلة - مع التمنيات بالتوفيق

2 7 -05- 2018

AL-AQSA UNIVERSITY Department of Mathematics

Complex Analysis (Math 3311)

Final Exam

Time: Two Hours Date: 27/5/2018 "second semester 2017-2018"

STATE OF PALESTINE Faculty of Applied Science

Q6	Total
,	
10	60

Answer all the following questions:

(Q1) (a) Prove that
$$|z| \le |\text{Re}\,z| + |\text{Im}\,z| \le \sqrt{2}|z|$$
 for any complex number z (5 marks)

(b) Show that
$$\lim_{z \to \infty} f(z) = w_0$$
 iff $\lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$ (3 marks)

(c) Use part (b) to find
$$\lim_{z \to \infty} \frac{3z^2 - i}{iz^2 + 3}$$
 (2 marks)

(Q2)(a) Sketch the set $G = \{z \in \mathbb{C} : |z-4| < |z| \}$ in the complex plane, and find its closure.

(b) For any complex number
$$z = x + iy$$
 show that $|\sin z|^2 = \sin^2 x + \sinh^2 y$, and use this to show that $|\sinh y| \le |\sin z| \le \cosh y$. (5 marks)

(c) Find the set of all accumulation points of the set
$$K = \left\{ (-1)^n \frac{(1+i)(n-1)}{n} : n \in \mathbb{N} \right\}$$
. (3 marks)

(Q3)(a) Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic, then find a harmonic conjugate v(x, y).

(b) Show that the function $f(z) = e^{-\theta} \cos(\ln r) + i e^{-\theta} \sin(\ln r)$ is differentiable in the domain $(r > 0, \ 0 < \theta < 2\pi)$. and find f'(z).

(Q4) (a) Find all complex number z such that $e^{2z-3} = 1 + \sqrt{3}i$ (3 marks)

(b) Show that $\tan^{-1} z = \frac{i}{2} \log \frac{i+z}{i-z}$. Then find all solutions of the equation $\tan z = 3i$.

(5 marks)

(Q5)(a) Evaluate $\int_C \frac{z+2}{z} dz$, where C is the semicircle $z = 2e^{i\theta}$, $(\pi \le \theta \le 2\pi)$. (4 marks)

(b) Without evaluating the integral, show that
$$\left| \int_C \frac{\text{Log } z}{z^3} \, dz \right| < 2\pi \left(\frac{\pi + \ln R}{R^2} \right)$$
, where C denotes the circle $|z| = R$ $(R > 1)$, taken counterclockwise. (4 marks)

(c) Let a function f(z) be analytic in a domain D. If |f(z)| is constant in D, prove that f(z) must be constant in D. (4 marks)

(b) Evaluate the following integrals:

(1)
$$\int_C \frac{dz}{(z^2+9)^2} dz$$
, where C denotes the positively oriented circle $|z+2i|=3$. (4 marks)

(2)
$$\int_C \frac{e^z \cos z}{(z+3i)(z-i)} dz$$
, where C denotes the positively oriented circle $|z|=2$. (4 marks)

STATE OF PALESTINE

AL-AQSA UNIVERSITY

ننتندواة فاسطين

جامعة الأقصسى كاية الطبيقية

	الامتحان النهائي في مادة تفاضل وتكامل ١ الزمن: ساعتان
	اسم الطالبة:
	المراه المراع المراه المراه المراه المراه المراه المراه المراه المراه المراع المراه المراع المراه ال
L	التخصص

Answer the following questions:

1. Find the area of the region between the graphs $y = 4-x^2$ and y = -x + 2 where $-2 \le x \le 3$

2. Find the horizontal asymptotes of $f(x) = \frac{3x}{\sqrt{2x^2 - x^2}}$

3. Find
$$\lim_{x \to 0} \frac{x - \tan 7x}{2x}$$

4. Find the domain and range of
$$f(x) = \frac{5}{1 - \sqrt{x}}$$

5. Find
$$\int \frac{\tan^2(x)\sec^2(x)dx}{(1+\tan^3(x))^5}$$

6. Find
$$\frac{dy}{dx}$$
:
(i) $y = \cos^4(\csc^2(3x))$

(ii)
$$y = \int_{\sqrt{x}}^{x^2} \frac{dt}{1+t^2}$$

(iii)
$$\int_{\sqrt{x}}^{x^3} \frac{dt}{t + \sin(t)}$$

7. Find
$$\lim_{x \to -5} \sqrt{1-3x}$$
, then find $\delta > 0$ that works for $\varepsilon = 0.5$

8. Find increasing, decreasing intervals, local extreme values, $f(x) = x^4 - 4x^3$

9. Find the average value of $f(x) = \sec^2(x)$ on $[0, \frac{\pi}{4}]$

10. Find $\int_{x}^{3} \sqrt{7+x^2} dx$

- 11. Find the volume of the solid generated by revoling the region bounded by the curves $y = \sqrt{x}$, y = 2 and x = 0: (i) about y = 2
 - (ii) about x = 5

12. Find the asymptotes of the graph of $f(x) = \frac{3x^2}{x+1}$ and sketch the graph of f(x).

$$\int_{10}^{\frac{\pi}{10}} \cos^2(5x) \, dx$$

14. Use the Max-Min inequality to find a lower bound for the value of the integral

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1 + 3\csc(x)} dx$$

15. Find the value of c that satisfies the Mean Value Theorem

(for derivatives) for $f(x) = x + \frac{1}{x}$ on [1, 2]

انهالاسكا

ســـم الرياضيات

υZ	4
<u> </u>	جامعة الإسعاد

الاختبار النهائي في مساق (تفاضل وتكامل ٢) التاريـــــخ: ٢٠١٨/٦/٢م يات رقم المقرر (MATH1412) الزمـــن: ساعتان	فصل الثاني ٢٠١٨ حاضر البيساق:قسم الرياض
(MATH1412)	deves sugary c
عد الأسئلة: 6 اسم الطالب/ ة	
Q1) Choose the correct answer: [10 marks]	ئة الإمشحانات
1) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both divergent, then $\sum_{n=1}^{\infty} a_n + b_n$ is:	يەلاپ « الطائرة الاولى
a) Convergent b) divergent c) may converge or may diverge.	d) none of the above
2) The series $\sum_{n=0}^{\infty} \frac{(-1)^{2n+1}}{3^n}$ is	
a) alternating series b) geometric series c) power series d) a and b	
3) $\cosh^2 x - \sinh^2 x$ equal to	
a) 1 b) $\cosh(2x)$ c) e^x d) non of the above	
4) If the points (r, θ) and $(-r, -\theta)$ lie on the graph of the curve $r = f(\theta)$, then th	e graph is symmetric
about:	
a) $X - axis$ b) $Y - axis$ c) the pole(origin) d) all the above	
5) The sum of the series $\sum_{n=0}^{\infty} \left(\frac{-1}{9}\right)^n$ is equal to:	
a) $\frac{9}{8}$ b) $\frac{1}{8}$ c) $\frac{9}{10}$	
6) The parabola $x = -2y^2$ has focus at:	
a) $(0, -\frac{1}{8})$ b) $(-\frac{1}{8}, 0)$ c) $(0, -8)$ d) $(-8, 0)$)
7) The polar coordinates of the center of the circle $r = -8\sin\theta$ is:	
a) $(-4, \frac{\pi}{2})$ b) $(-4, -\frac{\pi}{2})$ c) $(4, -\frac{\pi}{3})$	$(4,\frac{\pi}{2})$
8) The domain of $y = \log_{\gamma} x$ is	
a) $(-\infty,\infty)$ b) $(0,\infty)$ c) $[0,\infty)$ d) \Re	[0]
9) If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$	
a) diverges b)converges c) absolute converges d) may converge or m	ay diverge
10) The polar equation which equivalent to the Cartesian equation $xy = 1$	is
a) $r^2 + r \sin \theta = 1$ b) $r^2 \sin(2\theta) = 2$ c) $r = 1 + \sin \theta \cos \theta$	d) $r=1$

Q2)

a) Find
$$\frac{dy}{dx}$$
, if $y = \log_3 \left[\cos^{-1}(\tanh x)\right] + 7^{\sec x}$

[3 marks]

b) Consider the function
$$f(x) = x + 2\sqrt{x}$$
. Find $\left(\frac{df^{-1}}{dx}\right)_{x=8}$

[3 marks]

c) Solve for x:

$$\ln(x-2) = 4 + \ln x$$

[3 marks]

d) Find the following limit:

[3 marks]

$$\lim_{x \to 0^+} \left[\cos \left(\sqrt{x} \right) \right]^{\frac{1}{x}}$$

a) Find the center, foci, vertices, and asymptotes of the conic section:

[4 marks]

$$4x^2 - 9y^2 + 4x + 54y + 44 = 0.$$

b)_ Find the radius and the interval of convergence (abs. conv., cond. Conv.) of the power series:

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n}}$$

[4 marks]

a) Find Taylor series about zero (a = 0) generated by the function $f(x) = \cos(2x + \pi)$. [3 marks]

b) Find <u>binomial series</u> generated by the function $f(x) = \frac{1}{\sqrt{x+2}}$. [3 marks]

- c) Let $r = \frac{8}{2 + 2\sin\theta}$ be an equation of conic section with one focus at the origin: [3 marks]
- a) Identify the conic section.
- b) Find the directrix that corresponds to the focus at the origin.
- c) Sketch it's graph.

a) let $r = 2 + 4\sin\theta$

[4 marks]

1) Sketch the graph of the curve.

2) Find the area inside the curve.

b) Test the convergence for each of the following:

[8 marks]

1)
$$\sum_{n=1}^{\infty} \frac{4}{(3n+1)(3n-1)}$$

(2 marks)

2) $\sum_{n=0}^{\infty} \frac{e^n}{(2n)!}$

(2 marks)

3)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+5}{n}\right)^n$$

(2 marks)

4)
$$\int_{1}^{e} \frac{1}{x \ln(x)} dx$$

(2 marks)

Q6) Find the following integral

[9 marks]

1)
$$\int x^4 \log_3 x \ dx$$

(3 marks)

2)
$$\int_{\ln 2}^{\ln 3} \frac{e^x}{\sqrt{1 - e^{2x}}} dx$$

(3 marks)

3)
$$\int \frac{x^{\ln x} \cdot \ln x}{x}$$

dx

(3 marks)

انتمت الأسئلة ، مع تمنياتي للجميع بالنجام و التوفيق

كلية العلوم قسم الرياضيات

أجب عن الأسئلة التالية: - السؤال الأول: - إذا كان

$$\vec{A} = \sin \hat{\mathbf{u}} + \cos \hat{\mathbf{u}} + \sin \hat{\mathbf{k}}$$

$$\vec{B} = \cos \hat{\mathbf{u}} - \sin \hat{\mathbf{u}} + 5\hat{\mathbf{k}}$$

$$\vec{C} = 3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$$

(8 درجات)

 $\frac{d}{dt} \left[\vec{A} \cdot (\vec{B} \times \vec{C}) \right]$ اُوجِد

السؤال الثاني:-هل مجال القوة $\vec{F} = (y^2 z^3 \cos x - 4x^3 z)\hat{i} + 2yz^3 \sin x \hat{j} + (3y^2 z^2 \sin x - x^4)\hat{k}$ تحفظيا وإن كان كذلك أوجد/ي دالة الجهد العدي Φ

السوال الثالث:-

 $\hat{i}-2\hat{j}-2\hat{k}$ في الاتجاهية للدالة العددية $\Phi=3x^2y-6y^3z^2$ في الاتجاه العددية -1 (8 درجات)

 $\vec{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$ القوة $\hat{k} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$ على طول الخط المستقيم من النقطة (1, 2, 4) إلى النقطة (2, 5, 6) على طول الخط المستقيم من النقطة (1, 2, 4) إلى النقطة (2, 5, 6)

السوال الرابع: - هل مجال القوة - هل مجال القوة $\vec{F} = (y^2z^3\cos x - 4x^3z)\hat{i} + 2yz^3\sin x\,\hat{j} + (3y^2z^2\sin x - x^4)\hat{k}$ (12) درجة Φ السوال الخامس: $\vec{\nabla}(\vec{r}\cdot\vec{A})=\vec{A}$ ان أثبت أن \vec{A} متجه ثابت أثبت أن \vec{A}

(6 درجات)

(6 درجات)

 $\vec{\nabla}\cdot(\vec{A} imes\vec{r})$ احسب $\vec{\nabla} imes\vec{A}=\vec{0}$ اخان -2

(6 درجات)

 $|\vec{\nabla}|\vec{r}|^3 = 3\vec{r} \ r$ if $|\vec{r}|^3 = 3\vec{r}$

نتبار النهائي في مساق : مدخل الي المنطق ونظرية

الأختبار النهائي

الفصل الثاني 2018م

MATH 1313

البات المجموعات رقم الباقرز - 13 حاضر المساق أ. د عد

اسم الطالب/ة

عدد الآسئلة: 3

ملحظات :عدد الصفحات: 3

I-True or False:- [10 Marks]

- 1. φ is an inductive set.
- 2. PMI is equivalent to PCI.
- 3. $\{\{4\}\}\in\{1,2,3,\{4\}\}$.
- 4. If $A \subseteq B$, then $A^c \subseteq B^c$.
- 5. If A and B are finite sets, then A-B is finite.
- 6. Every infinite set is uncountable.
- 7. Every finite set is countable.
- 8. Every subset of infinite set is finite.
- 9. 7+5=12 iff 1+3=5.
- 10. Every denumerable set is countable.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.

II- Prove the following:

1. Use contradiction to prove: $\varphi - A = \varphi$. [5 Marks]

2. If $f: A \rightarrow B$, then $f \circ I_A = f$. [5 Marks]

- 3. Define a relation S on Z by: $x S y iff x^2 = y^2$
 - i- Prove that S is an equivalence relation.

[4 Marks]

ii. Describe the equivalence classes for S.

[3 Marks]

4. Prove that if $f:A \xrightarrow{1-1} B$ and $g:B \xrightarrow{1-1} C$, then $g \circ f:A \to C$ is 1-1 function. [6 Marks]

III- Solve all the following questions:-

1. Show that for any set A and $x \notin A$, then $A \approx A \times \{x\}$

[5 marks]

i- 2. prove: $P(A \cap B) = P(A) \cap P(B)$.

[5 Marks]

3. Given a function, $f(x) = x^2$

ii- Find $f^{-1}([1,4))$

[2 Marks]

iii- f([1,2]).

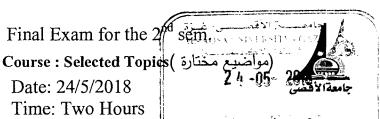
[2 Marks]

iii. $f((-1,2) \cup (2,3))$.

[2 Marks]

4. Use the PMI to prove $2+2^2+2^3+...+2^n=2^{n+1}-2$, $\forall n \in \mathbb{N}$

[6 Marks]


iv- Prove by any method: if S is finite and $x \notin S$, then $S \cup \{x\}$ is finite.

[5 Marks]

انتهت الأسئلة

Final Exam for the 2

Date: 24/5/2018 Time: Two Hours

STATE OF PALESTINE AL-AQSA UNIVERSITY

Faculty of Science

Math Dep

الاسم:

Solve the following questions:

(Q1)

(i) If G is not connected and |V| = 21 then find the maximum number of edges in G (6 marks)

(iii) How many r-regions do the graph K_{30} has?

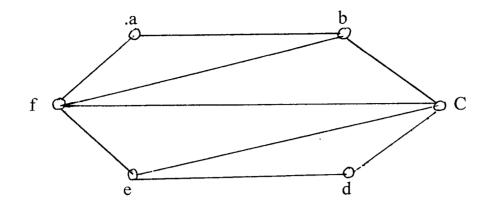
(4 marks)

(iv) Find a graph homeomorphic to $K_{2,2}$ with minimum number of edges (2 marks) (Q2) (i)Let T be a binary tree of height h then show that T has between h+1 and $2^{h+1}-1$ vertices (6 marks)

(ii) If T is a full binary tree with 20 internal vertices then find the number of leaves (4 marks)

(iii) Represent the expression
$$\frac{(xy^2 + 3x^4)z}{y + z^2}$$
 by a binary tree (3 marks)

۲


(Q3)

(i) For which m and n does $K_{m,n}$

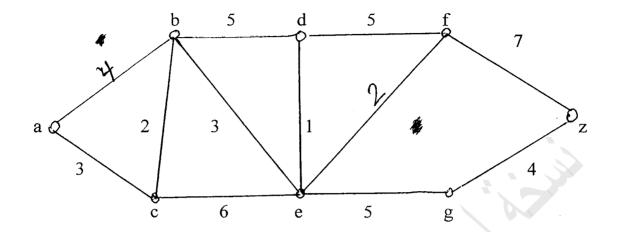
(6 marks)

- 1- Eulerian
- 2- Hamiltonian
- 3- Planar
- (ii) Let G = (V, E) be a connected planar simple graph with 30 vertices each of degree 4 Into how many regions does a representation of this planar graph splits the plane (4 marks)

(iii)Conceder the following graph

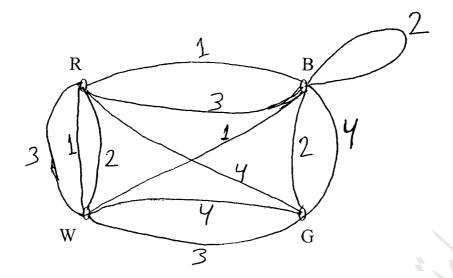
1- Is G has an Euler path? If yes find it

(5 marks)


2- Is G a planar graph? If not why?

(4 marks)

3- Find the adjacency matrix for the graph


(2 marks)

(Q4) Find the minimal spanning tree for the following weighted graph (5 marks)

(Q5) Find a solution for the following Instant Insanity puzzle.

(7 marks)

(Q6) 1- What are the chromatic numbers for the following? (4 marks) $I - C_{101}$ (cycle with 101 vertices)

II -
$$K_{2,25}$$

2- Schedule the final exams for the following courses shown in the following Boolean matrix using fewest numbers of periods (8 marks)

(Math115	Math116	Math185	Math195	CS 101	CS 102	CS 273	CS 473
Math115	0	0	0	1	1	1	1	0
Math116	0	0	1	1	1	1	1	0
Math185	0	1	0	0	1	1	1	1
Math195	1	1	0	0	0	0	1	1
CS 101	1	1	1	0	0	1	1	1
CS 102	1	1	1	0	1	0	1	1
CS 273	1	1	1	1	1	1	0	1
CS 473	0	0	1	1	1	1	1	0)

A GOOD LUCK A

جامعه ا و المحكم المحك

الفصل الثاني 2018 م محاضر المساق أ. د عبدالسلام أبوزايدة

ات: 3 عدد الآسئلة: 8 اسم الطالب/ة

<u>ملاحظات</u> :عدد الصفحات: 3

1- True or False

[10 Marks]

- i. The set of rotations form a commutative group.
- ii. The composition of two primitives is a primitive.
- iii. Translation fixes a line that is parallel to its vector.
- iv. Reflection in the Y-axis maps (1, 2) to (-1, -2).
- v. Reflection in the axis passes through the origin with angle 0 fixes the vertical lines.
- vi. The set of all similarities of negative ratio forms a group.
- vii. Primitive transformation fixes a line pointwise.
- viii. Affine transformation preserves the area of the triangle.
 - ix. Every similarity is an isometry.
 - x. Similarity of ratio k = 2 preserves the surface of the circle.

i.	ii.	iii.	iv.	v.	vi.	vii.	viii.	ix.	х.
								<u></u>	

2 - Show that the set of all transformations of the form:

$$T: \begin{array}{l} x' = x \\ y' = k y \end{array} , k \succ 0$$

Forms a group.

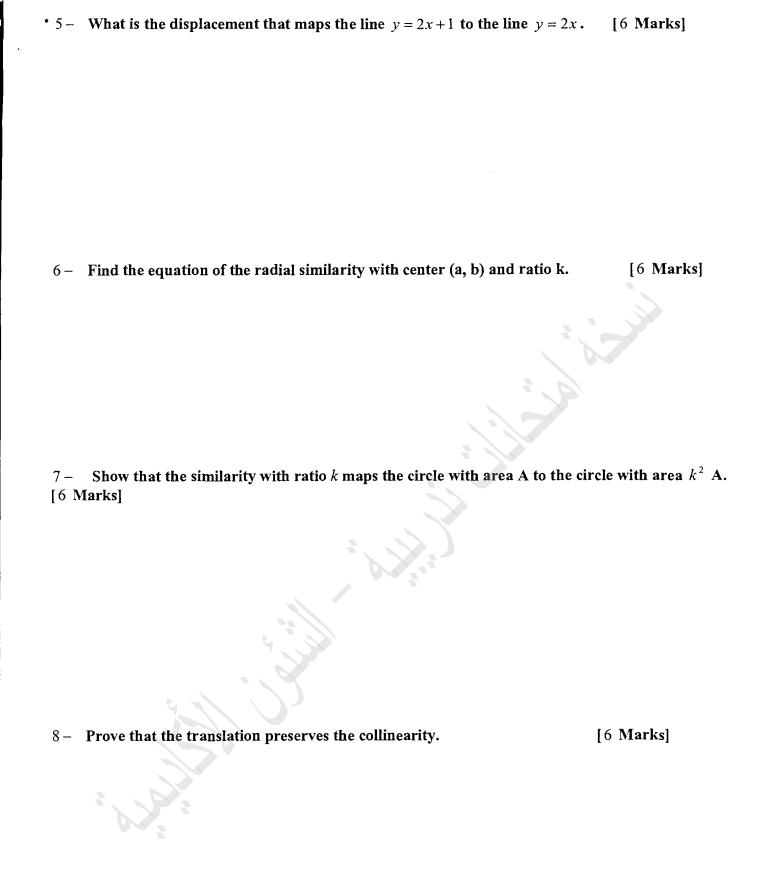
[6 Marks]

'3- Given a transformation T by:

$$T: \frac{x^{1} = 2x + 3y + 1}{y^{1} = 6x + 4y + 2}$$

Decompose T into primitive transformations.

[10 Marks]


[10 Marks]

4- Given a transformation T by:

$$T: x^{\setminus} = \frac{1}{2} x + \frac{\sqrt{3}}{2} y$$
$$y^{\setminus} = \frac{\sqrt{3}}{2} x - \frac{1}{2} y$$

- i. Show that T is a reflection.
- ii. Find the axis of T.

iii. Find the image of the line $y = \sqrt{3} x$.

نظرية الاحتمالات الامتحان النهائي المحاضر/د. عصام عاطف داود

جامعة الأقصى – غزة قسم الرياضيات التاريخ: 2018/5/21 (الفترة الثانية)

(6 درجات)

السؤال الأول: أجب عن الأسئلة الآتية حسب المطلوب بحد الإمتحانات

- 1. (درجتان) بكم طريقة مختلفة يمكن اختيار (كرأت معراء و 4 كرات صفراء من صندوق يحتوي على 5 كرات حمراء و 6 كرات صفراء؟
 - 2. (درجتان) كم عدد التبديلات المختلفة الموجودة في أحرف كلمة "BOOK"؟
 - $(x+y+z)^8$ في $x^2y^3z^3$ ماهو معامل 3

(10 درجات)

السؤال الثاني: أثبت كلاً ممايلي:

 $p(\phi) = 0$ درجان .1

 $p(A|B) \ge \frac{a+b-1}{b}$ فإن p(B) = b و p(A) = a فإن $p(A|B) \ge 2$.

 $\sum_{r=0}^{n} r \binom{n}{r} = n 2^{n-1} (2^{n-1} - 3^{n-1}) .3$

(8 درجات)

السؤال الثالث: أجب حسب المطلوب:

- (Poisson) إذا كان X_1, X_2, \dots, X_n متغيرات عشوائية مستقلة تتبع توزيع بواسون $Y = X_1 + X_2 + \dots + X_n$ بنفس المعلمة λ . أوجد التوزيع الاحتمالي للمتغير Y حيث X_1, X_2, \dots, X_n
- 2. (4 سبت المعلمة θ . أوجد دالة الكثافة الاحتمالية θ . أوجد دالة الكثافة الاحتمالية $Y = \ln(X)$ للمتغير $Y = \ln(X)$

(15 درجة)

السؤال الرابع: أجب حسب المطلوب:

 $X \sim N(5,25)$ اذا کان .1

p(-10 < X < 10) أوجد أوجد

p(X > a) = 0.90 ب. وجد قيمة a قيمة عيث أوجد

- 2. (3 ربطت) إذا كانت ماكنة معينة تحتاج إلى تصليح بمعدل مرة واحدة كل 3 سنوات، ما احتمال أن تعمل الماكنة لمدة على الأقل 5 سنوات دون الحاجة إلى تصليح؟
- 3. (3 لرجات) إذا كان احتمال شخص ما يصدق إشاعة = 0.75، فما احتمال أن الشخص الثامن الذي يسمع الإشاعة هو الشخص الخامس الذي يصدقها؟
- 4. (3 درجات) تقدم 12 شخص لوظيفة ما، 8 أشخاص منهم مؤهلين، اذا تم اختيار 5 أشخاص منهم بشكل عشوائي للمقابلة، فما احتمال أن يكون منهم 2 فقط مؤهلين إذا كان السحب بإرجاع؟

(9 درجات)

السؤال الخامس: إذا كان f(x,y) تعطى من خلال الجدول التالي:

		X					
		-1	0	1			
Y	-1	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$			
	1	$\frac{1}{6}$	0	$\frac{1}{6}$			

- Cov(X,Y) أوجد $^{(6)}$.1
- X و X متغیران مستقلان؟ أجب مع التفسیر . 2

(12 درجات)

السوال السادس:

إذا كان

$$f(x,y) = e^{-x-y}$$
, $x > 0$, $y > 0$

W = 3X + 4Y - 5 حيث Var(W)

(5 درجات)

السؤال الإضافي: BONUS

- p(|X| > b) = 0.10 فأوجد b حيث $X \sim N(5,25)$ يا 1.
- $M_{\chi}(t) = \frac{t}{1-t}$ وضح لماذا لايوجد متغير عشوائي له الدالة المولدة للعزوم الآتية:

Some Formulas:

$$X \sim Poisson(\lambda) \Rightarrow f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0,1,2,...$$

$$E(X) = \lambda, \quad Var(X) = \lambda, \quad M_X(t) = e^{\lambda(e^t - 1)}$$

$$X \sim Exponential(\theta) \Rightarrow f(x) = \frac{1}{\theta} e^{\frac{-x}{\theta}}, x > 0$$

$$E(X) = \theta$$
, $Var(X) = \theta^2$, $M_X(t) = \frac{1}{(1 - \theta t)}$

$$X \sim binomial(n,\theta) \Rightarrow f(x) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}, x = 0,1,2,...,n$$

$$E(X) = n\theta$$
, $Var(X) = n\theta(1-\theta)$, $M_X(t) = (\theta e^t + (1-\theta))^n$

$$X \sim Gamma(\alpha, \beta) \Rightarrow f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{\frac{-x}{\beta}}, x > 0$$

$$E(X) = \alpha \beta$$
, $Var(X) = \alpha \beta^2$, $M_X(t) = \frac{1}{(1 - \beta t)^{\alpha}}$

$$X \sim negative binomial(k, \theta) \Rightarrow f(x) = {x-1 \choose k-1} \theta^k (1-\theta)^{x-k}, x = k, k+1,...$$

$$X \sim geometric(\theta) \Rightarrow f(x) = \theta(1-\theta)^{x-1}, x = 1, 2, ...$$

$$X \sim hypergeometric \Rightarrow f(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$

$$\sum_{i=0}^{n} \binom{n}{i} X^{i} Y^{n-i} = (X+Y)^{n}$$

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

Statistical Tables

z	.00	.01	.02	.03	.()4	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
1.0	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
(),4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.219()	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.285
0.8^{-1}	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.313
().9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.338
1.()	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.362
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.383
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.401
1.3	.4032	.4()49	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.417
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.431
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.444
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.454
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.463
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.470
1.9	.4713	.4719	.4726	.4732	.4738	4744	.4750	.4756	.4761	.476
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.481
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.485
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.489
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.491
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.493
2.5	.4938	.494()	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.495
2.6	.4953	.4955	.4956	.4957	.4959	.496()	.4961	.4962	.4963	.496
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.497
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.498
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.498
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.499

Also, for z = 4.0, 5.0, and 6.0, the probabilities are 0.49997, 0.49999997, and 0.499999999.